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Abstract
We examine two sets of second-degree Painlevé equations derived by Chazy
in 1909, denoted by systems (II) and (III). The last member of each set is
a second-degree version of the Painlevé-VI equation, and there are no other
second-order second-degree Painlevé equations in the polynomial class with
this property. We map the last member of system (II) into the Fokas–Yortsos
equation and demonstrate how both Schlesinger and Okamoto transformations
for Painlevé-VI can be read off the Chazy equation. The 24 fundamental
Schlesinger transformations were known to Garnier in 1943 while the 64
Okamoto transformations date from 1987. In an appendix, we gather together
the solutions of the five members of system (II). System (III) is better known,
being equivalent to Jimbo and Miwa’s equations for the logarithmic derivatives
of the tau functions of the six Painlevé transcendents. The last member, known
to Painlevé in 1906, was written in a manifestly symmetric form by Jimbo
and Miwa, suggesting many induced symmetries for Painlevé-VI. In particular,
Schlesinger and Okamoto transformations for Painlevé-VI can be read off
immediately.

PACS number: 02.30.Jr

1. Introduction

In a short paper, Chazy (1909) tantalized his readers with two intriguing sets of second-degree
differential equations. He began by writing down the six classical Painlevé equations, PI, . . . ,

PVI, exactly as they had appeared in Painlevé (1906), which is the first time that they had been
gathered together into a list. Chazy denoted them by system (I). With variables renamed but
Painlevé’s original parameters retained, system (I) is

w′′ = 6w2 + t, (1.1)

w′′ = 2w3 + tw + α, (1.2)

w′′ = 1

w
(w′)2 − 1

t
w′ + γw3 +

α

t
w2 +

β

t
+

δ

w
, (1.3)
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w′′ = 1

2w
(w′)2 +

3

2
w3 + 4tw2 + 2(t2 − α)w +

β

w
, (1.4)

w′′ =
{

1

2w
+

1

w − 1

}
(w′)2 − 1

t
w′ +

(w − 1)2

t2

{
αw +

β

w

}
+

γw

t
+

δw(w + 1)

w − 1
, (1.5)

w′′ = 1

2

{
1

w
+

1

w − 1
+

1

w − t

}
(w′)2 −

{
1

t
+

1

t − 1
+

1

w − t

}
w′

+
w(w − 1)(w − t)

t2(t − 1)2

{
α + β

t

w2
+ γ

t − 1

(w − 1)2
+ δ

t (t − 1)

(w − t)2

}
. (1.6)

Unless otherwise stated, a prime will denote d/dt throughout this paper. In general, we will
use Leibniz’ notation for differentiation with respect to other variables.

The first known appearance of each of these equations is as follows: PI and PII appear in
Painlevé (1898a); PIII in Painlevé (1898b); PIV in Gambier (1906a, 1906b); PV in Gambier
(1906c) together with an alternative derivation of PVI; and PVI in Fuchs (1905). The Fuchs
paper is cited by both Gambier (1906c) and Painlevé (1906). An elementary special case of
PV was known to Painlevé (1902a). An elementary special case of PVI was known to Picard
(1889) and Painlevé (1893).

The discovery of PVI by Fuchs was the first indication that Painlevé’s own classification of
second-order first-degree differential equations (Painlevé 1902a) was not complete. Gambier
(1906a, 1906b, 1906c, 1907a, 1907b, 1910) reopened the investigation and completed the
classification. He produced a list of 50 equations, the first 20 of which were in Painlevé
(1902a). Gambier’s list, with minor permutations and gauge changes, is the well-known list
in Ince’s classic textbook (Ince 1926). Gambier placed PVI second-last in 49th position, and
saved the last position for a beautiful equation containing three PI functions in its coefficients.
Ince permuted Gambier’s last three equations, placing PVI and the latter equation in positions
L and XLVIII, respectively, this being a more natural ordering from the point of view of
Painlevé classification.

For later convenience, we introduce Jimbo and Miwa’s notation for the PVI coefficient
parameters (Jimbo and Miwa 1981, Jimbo 1982):

α = 1
2 (θ∞ − 1)2, β = − 1

2θ2
0 , γ = 1

2θ2
1 , δ = 1

2

(
1 − θ2

t

)
. (1.7)

Also, we will often speak of equations being equivalent to each other under some unspecified
gauge transformation. The standard group of gauge transformations acting on Painlevé-type
ordinary differential equations is the group of Möbius transformations,

w̄ = a(t)w + b(t)

c(t)w + d(t)
, t̄ = φ(t), (1.8)

where t is the independent variable, w is the dependent variable, ad − bc �= 0 and φ(t)

is not constant. Because the second-degree equations appearing in this paper are all in the
polynomial class, the gauge transformations acting on them consist of the subgroup of linear
transformations with c = 0 and d = 1. As was well known to the earliest authors, the PVI

equation is invariant under a discrete group of 24 Möbius transformations of the form (1.8)
which permute the distinguished values w = ∞, 0, 1 and t. When working with PVI, it is
useful to have a complete table on hand. To save space, we split it into two subgroups. The
first consists of the identity and the following three involutions having t̄ = t :

w̄ = t

w
,

{
θ̄∞ = θ0 + 1, θ̄0 = θ∞ − 1,

θ̄1 = θt , θ̄ t = θ1,
(1.9)
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w̄ = w − t

w − 1
,

{
θ̄∞ = θ1 + 1, θ̄0 = θt ,

θ̄1 = θ∞ − 1, θ̄ t = θ0,
(1.10)

w̄ = t (w − 1)

w − t
,

{
θ̄∞ = θt + 1, θ̄0 = θ1,

θ̄1 = θ0, θ̄ t = θ∞ − 1.
(1.11)

The second subgroup consists of the identity and the following five transformations having
θ̄∞ = θ∞:

w̄ = 1 − w, t̄ = 1 − t, θ̄0 = θ1, θ̄1 = θ0, θ̄ t = θt , (1.12)

w̄ = w/t, t̄ = 1/t, θ̄0 = θ0, θ̄1 = θt , θ̄ t = θ1, (1.13)

w̄ = w − t

1 − t
, t̄ = t

t − 1
, θ̄0 = θt , θ̄1 = θ1, θ̄ t = θ0, (1.14)

w̄ = 1 − w

1 − t
, t̄ = 1

1 − t
, θ̄0 = θ1, θ̄1 = θt , θ̄ t = θ0, (1.15)

w̄ = t − w

t
, t̄ = t − 1

t
, θ̄0 = θt , θ̄1 = θ0, θ̄ t = θ1. (1.16)

In this paper, we do not consider quadratic or other algebraic transformations in w that are
only admitted by PVI with suitably restricted parameters.

The first of the aforementioned systems of second-degree Chazy equations is his
system (II):

(
d2v

dz2
− 6v2 − α1

)2

= z2

{(
dv

dz

)2

− 4v3 − 2α1v − β1

}
, (1.17)

(
d2v

dz2
− 2v3 − α1v − β1

)2

= −4(v − ez)2

{(
dv

dz

)2

− v4 − α1v
2 − 2β1v − γ1

}
, (1.18)

(
d2v

dz2
− α1v − β1

)2

= 4v2

z2

{(
dv

dz

)2

− α1v
2 − 2β1v − γ1

}
, (1.19)

(
d2v

dz2
− 6v2 − α1v − β1

)2

=
(

2v

z
− z

)2 {(
dv

dz

)2

− 4v3 − α1v
2 − 2β1v − γ1

}
, (1.20)

(
d2v

dz2
− 2v3 − α1v − β1

)2

= 4 tan2 z

(
v − δ1

sin z

)2 {(
dv

dz

)2

− v4 − α1v
2 − 2β1v − γ1

}
.

(1.21)

As before, we have renamed variables, but the parameters are the same as in Chazy (1909)
except that we have placed a subscript 1 on each. These equations were later derived from
first principles in a major second-degree Painlevé classification problem by Bureau (1972).

The second system of second-degree Chazy equations arose as first integrals of a set of
third-order Painlevé-type equations that Chazy (1907) had derived two years earlier. This is
Chazy’s system (III):

(
d2u

dx2

)2

+ 4

(
du

dx

)3

+ 2

(
x

du

dx
− u

)
= 0, (1.22)
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d2u

dx2

)2

+ 4

(
du

dx

)3

+ x

(
du

dx

)2

− u
du

dx
+ α2 = 0, (1.23)

(
d2u

dx2

)2

+ 4

(
du

dx

)3

+

(
x

du

dx
− u

)2

+ α2
du

dx
+ β2 = 0, (1.24)

(
d2u

dx2
− 2u

x2

)2

+ 4

(
du

dx
− 2u

x

)(
du

dx
+

u

x

)2

+ α2x
2

(
x

du

dx
− 2u

)2

+ β2x

(
x

du

dx
− 2u

)

+
γ2

x2

(
x

du

dx
+ u

)
+ δ2 = 0, (1.25)

(
d2u

dx2
− 2℘(x)u

)2

+ 4

(
du

dx

)3

− 12℘(x)u2 du

dx
+ 4℘′(x)u3

+ α2

{
℘(x)

(
du

dx

)2

− ℘′(x)u
du

dx
+ ℘2(x)u2

}

+ H(x)
du

dx
− H ′(x)u + δ2 = 0, (1.26)

where, in the last equation, ℘(x) is the Weierstrass elliptic function ℘(x; 0, g3) having g2 = 0.
The primes on ℘ and H denote d/dx. The parameter g3 is not essential and can be normalized
to any particular nonzero constant using scaling freedom in x and u, Chazy’s choice being
g3 = 1. The function H(x) is a Lamé function satisfying

H ′′(x) − 2℘(x; 0, g3)H(x) = 0. (1.27)

Chazy gave the explicit formula,

H(x) = β2
σ(x + h)

σ(x)
e−xζ(h) + γ2

σ(x − h)

σ(x)
exζ(h), (1.28)

where h and −h are the two unique roots of the equation ℘(h; 0, g3) = 0 in a period
parallelogram centred on the origin and σ(x) and ζ(x) are Weierstrass sigma and zeta functions
corresponding to ℘(x; 0, g3).

Chazy announced that he had derived these ten equations by applying algebraic
transformations to the six classical Painlevé equations, but he did not show the reader these
transformations. More recently, Muğan and Sakka (1997, 1999) and Sakka and Muğan (1998)
have taken up this idea and generated many second-degree Painlevé equations, mostly rational
in the dependent variable. The five members of system (II) map, respectively, to PIV, PV, PIII,
PV and PVI, and the five members of system (III) map, respectively, to PI, PII, PIV, PIII/PV and
PVI. System (III) occurs naturally in a particular Painlevé classification problem (Cosgrove
and Scoufis 1993) and can be embraced under a single master Painlevé equation. This system
also arises in representations of the Painlevé transcendents as ratios of entire functions or at
least analytic functions having no movable singularities (Jimbo and Miwa 1981).

Without knowing the precise problem that Chazy was investigating when he generated
system (II), we cannot be sure that system (II) comprises the complete solution of that problem.
However, it can be shown that system (II) is complete under the following hypotheses: (a) the
background class of differential equations is second-order second-degree equations for v(z)

that are polynomial in v and dv/dz and have the Painlevé property, (b) the square-free part on
the right-hand side is quadratic in dv/dz, (c) that part has constant coefficients, and (d) the
solution involves a Painlevé transcendent.

Painlevé (1902a) found equation (1.22) while expressing the PI transcendent as a ratio
of entire functions. Equations (1.23) and (1.24) can be extracted his corresponding analysis
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of PII and PIII. Later, Painlevé (1906) described how he obtained a second-degree equation
for a variable ν(x) by applying a transformation to PVI, but there is an error in his equation
(2). Chazy (1911) corrected Painlevé’s result and produced a variable t (x) that satisfies an
equation equivalent to (1.26). Painlevé’s equation (3), with w(t) replacing his PVI function
y(x), is

u(t) = t (t − 1)(w′)2

2w(w − 1)(w − t)
− αw

t(t − 1)
+

β

(t − 1)w
+

γ

t (w − 1)
− w′ − δ

w − t
,

w′ denoting dw/dt , and Chazy’s correction to Painlevé’s equation (2) is

ν(t) = u +

√
2αw

t(t − 1)
.

Chazy’s variable t (x) is ν(x)/2. The second-degree equation for ν(t) can be constructed by
substituting the change of variable,

y = 1
4 {2t (t − 1)ν + α −

√
2α − β − γ + δ(2t − 1)},

into equation (3.13) for y(t). However, the ν equation is not in the most elegant gauge.
Bureau (1964, 1972) attempted somewhat more ambitious Painlevé classification

problems and ran into the same sets of second-degree equations. But, by then, the direct
connection to the classical Painlevé equations was lost or forgotten, and Bureau was faced
with the task of solving these equations from scratch. He was able to solve them all except
(1.18), (1.20) and (1.21) (see also Bureau et al (1972)). Contact between system (II) and
the Painlevé transcendents was reestablished by Fokas and Yortsos (1981), who found a
second-degree equation gauge-equivalent to equation (1.21) and its explicit solution in terms
of PVI.

Many readers today would be familiar with some or all of these ten second-degree
equations, except possibly for the fact that Chazy has written some of them in a less familiar
gauge. Equations equivalent to members of systems (II) and (III) appear regularly, for example,
in random matrix theory and related disciplines. System (III) is equivalent to the equations that
Jimbo and Miwa (1981) gave for the logarithmic derivatives of the tau functions corresponding
to the Painlevé transcendents, the last two members being in a different gauge. Special cases of
equation (1.26) (in a gauge closer to equation (3.13)) have appeared in relativity applications
(Cosgrove 1977, Ernst 1977, Dale 1978) where the authors at the time did not realize that
the sixth Painlevé transcendent was involved. Schlesinger transformations are just below the
surface of Ernst (1977) and can be lifted out with a small amount of work. Since members of
system (III) are integrals of third- and fourth-order equations of the first degree, they appear
in group-invariant reductions of several soliton equations.

Here, we are primarily interested in the fifth members (1.21) and (1.26) of each system
because they map to PVI. The other equations are limiting contractions of equations (1.21)
and (1.26). Up to gauge, these are the only second-order second-degree Painlevé equations in
the polynomial class that are solvable in terms of PVI.

On the basis of the experience of mainly Russian authors in the preceding decades, Fokas
and Ablowitz (1982) gathered together the known transformation properties of the Painlevé
transcendents by relating them to second-degree equations. Ever since Gambier derived
equations XXXIV, XXXV, XLV and XLVII (Ince numbering) in terms of PII and XLII in
terms of PIV, it has been known that there is, in general, more than one way to carry out the
reductions (because of ± signs in the formulae), and hence one can generate maps from PII

to itself and maps from PIV to itself. With the aid of second-degree auxiliary equations, such
maps become considerably more abundant, and comprehensive symmetry maps have been
constructed for all of the Painlevé transcendents except the first. Interestingly, the equations
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that Fokas and Ablowitz selected for their demonstration were, up to a change of gauge, the
first four equations of system (III) and the last equation of system (II). This meant that, at the
time, PVI did not quite fit the pattern of the other transcendents.

The four transformations (or one containing two ± signs) found by Fokas and Yortsos
are Schlesinger transformations for PVI which have been given a twist by the involution (1.9).
Of course, if one particular Schlesinger transformation is known (either in a pure form or
mixed with simpler transformations), the full set of 24 basic Schlesinger transformations
(θµ → θµ ± 1 for exactly two of the four indices µ), can be generated easily by elementary
operations. The natural setting is the matrix function Y (x, t) satisfying the linear scattering
problem (Jimbo and Miwa 1981, Jimbo 1982) rather than the PVI function w(t) itself, and
complete results for 12 of the 24 Schlesinger transformations have been tabulated by Muğan
and Sakka (1995a).

Pure Schlesinger transformations for PVI were known to Garnier (1943), who saw an
application to a theorem of Schwarz on minimal surfaces. Garnier did not write out a
particular Schlesinger transformation in w explicitly, but gave a prescription for constructing
24 such transformations from Fuchs’ associated linear problem (Fuchs 1905). He used the
particular case given below by equations (2.6) and (2.7) as an illustration, but the reader needs
to do a calculation to get the explicit map from PVI to itself. With our variable w(t) replacing
Garnier’s variable λ(t), Garnier announced that his method would produce transformations of
the form,

w̄ = M(w′)2 + Kw′ + L

H(w′)2 + Nw′ + P
, (1.29)

where the coefficients are polynomials in w and t. He compared his results to the relations
of contiguity for hypergeometric functions. The effect on the theta parameters in the general
case is given by

θ̄µ1 = θµ1 + εµ1 , θ̄µ2 = θµ2 + εµ2 , θ̄µ3 = θµ3 , θ̄µ4 = θµ4 , (1.30)

where εµ1 and εµ2 denote ±1 independently and (µ1, µ2, µ3, µ4) is any permutation of the
subscripts (∞, 0, 1, t) in equation (1.7).

Garnier devoted special attention to PVI throughout his life and was aware that most
results for PVI had implications for some or all of the other five Painlevé transcendents. He
found the asymptotics of PVI near its critical points (Garnier 1916, 1917). He developed the
theory of isomonodromic deformations of linear systems, originally applied to PVI by Fuchs
(1905), and generalized it to the Painlevé hierarchy now known as the Garnier system (Garnier
1912, 1917, 1919). He solved the Riemann–Hilbert problem for linear Fuchsian systems of
differential equations and paid special attention to the associated monodromy problems for
PVI (Muğan and Sakka 1995b) and its hierarchy (Garnier 1926). He knew Fuchs’ elementary
solution of PVI expressible in terms of hypergeometric functions (Fuchs 1907, Lukashevich
and Yablonskii 1967a, 1967b) and generalized it to his hierarchy (Garnier 1912, 1917).
(Elementary transcendental solutions of PII and PIV were known earlier to Painlevé (1902b)
and Gambier (1910), respectively.) The first modern result on PVI that goes substantially
further than Garnier is Jimbo’s derivation of the exact connection formulae for PVI (Jimbo
1982). One can speculate that if Garnier (1943) had been better known, it is possible that the
infrastructure of transformation properties and elementary solutions of the classical Painlevé
equations would have been worked out decades earlier in a more systematic and unified way.
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2. The Fokas–Yortsos equation

Let us take a closer look at Chazy’s equation (1.21). Choose new variables t and V (t) according
to

sin z = 1 + t

1 − t
, cos z = 2i

√
t

1 − t
, v(z) = V (t) +

µ

4
, (2.1)

and new parameters κ , λ, µ and ν according to

α1 = 2ν − κ2 − 1
8µ2, β1 = 1

4κ2µ,

γ1 = 1
256 (16ν + 4κµ − µ2)(16ν − 4κµ − µ2), δ1 = 1

2λ

(Sakka and Mugan 1998). Then equation (1.21) maps directly into the Fokas–Yortsos equation
(Fokas and Yortsos 1981),

(L1)
2 = (R1)

2S1, (2.2)

where

L1 = V ′′ +
3t − 1

2t (t − 1)
V ′ +

(4V + µ)(2V 2 + µV + 2ν) − 4κ2V

4t (t − 1)2
,

R1 = (t + 1)(4V + µ) + 2λ(t − 1)

4t (t − 1)
,

S1 = (V ′)2 +
(2V 2 + µV + 2ν)2 − 4κ2V 2

4t (t − 1)2
,

the prime denoting d/dt .
The solution of equation (2.2) in terms of PVI is

V (t) = tw′

w
+

(λ − κ − 1)w

2(t − 1)
+

(λ + κ + 1)t

2(t − 1)w
− λ(t + 1)

2(t − 1)
− 1

2
− µ

4
, (2.3)

where w(t) satisfies the PVI equation (1.6) with parameters

α = 1
8 (λ − κ − 1)2, β = − 1

8 (λ + κ + 1)2,

γ = − 1
2ν + 1

32 (µ − 2κ)2, δ = 1
2 (ν + 1) − 1

32 (µ + 2κ)2.

Fokas and Yortsos observed that their equation (2.2) is even in the parameter κ , whereas
the expression for V (t) in terms of PVI is not. Thus there are two distinct reductions from
equation (2.2) to PVI. Because of the nonlinear parameter maps involving α and β, we get four
distinct maps from PVI to itself. These are the Fokas–Yortsos transformations. Their effect on
the theta parameters is

θ̄∞ = θ0 + ε0 + 1, θ̄0 = θ∞ + ε∞ − 1, θ̄1 = θt , θ̄ t = θ1, (2.4)

where ε∞ and ε0 denote ±1 independently. The transformation formula for the PVI function
w(t) is

w̄ = t (w − 1)N+N− − (w − t)D+D−
(w − 1)N+N− − (w − t)D+D−

, (2.5)

where

N± = t (t − 1)w′ + ε0θ0(w − t) + ε∞(θ∞ − 1)w(w − t) + (±θt − 1)(t − 1)w,

D± = t (t − 1)w′ + ε0θ0t (w − 1) + ε∞(θ∞ − 1)w(w − 1) ± θ1(t − 1)w.

To untwist the Fokas–Yortsos transformation and get four pure Schlesinger
transformations, apply the involution (1.9) to PVI after the Fokas–Yortsos transformation. This
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involution acts very simply on the Fokas–Yortsos equation itself according to {V, κ, λ, µ, ν} →
{−V, κ,−λ,−µ, ν}. The effect of the composite transformation on PVI is the pure Schlesinger
transformation,

θ̄∞ = θ∞ + ε∞, θ̄0 = θ0 + ε0, θ̄1 = θ1, θ̄ t = θt , (2.6)

w̄ = t (w − 1)N+N− − t (w − t)D+D−
t (w − 1)N+N− − (w − t)D+D−

. (2.7)

The symmetry-generating power of the Fokas–Yortsos equation can be considerably
enhanced by simply removing the additive constants µ/4 and −µ/4 from the right-hand sides
of equations (2.1) and (2.3). Let us take this opportunity to rename two parameters,

µ = 4µ1, ν = ν1 + (µ1)
2.

Then the variable V1(t) := V (t) + µ1 satisfies the second-degree equation,

(L2)
2 = (R2)

2S2, (2.8)

where

L2 = V ′′
1 +

3t − 1

2t (t − 1)
V ′

1 +
2(V1)

3 + (2ν1 − κ2)V1 + κ2µ1

t (t − 1)2
,

R2 = 2(t + 1)V1 + λ(t − 1)

2t (t − 1)
,

S2 = (V ′
1)

2 +
((V1)

2 + ν1)
2 − κ2(V1 − µ1)

2

t (t − 1)2
.

This equation is invariant under the parameter maps,

λ̄ = λ, µ̄1 = κ2µ1

κ̄2
, ν̄1 = ν1 + 1

2 (κ̄2 − κ2),

where κ̄ satisfies the sextic equation,

(κ̄2 − κ2)
{
κ̄4 + (4ν1 − κ2)κ̄2 + 4κ2µ2

1

} = 0.

The root κ̄ = −κ gives the four Fokas–Yortsos transformations above.
The four roots of the quartic factor yield the following 16 Okamoto transformations

(Okamoto 1987). Let ε∞, ε0, ε1 and εt denote ±1 independently, and also independently of
any previous usage. The theta parameters transform according to

θ̄∞ = 1
2 (ε∞θ∞ + ε0θ0 + ε1θ1 + εtθt + 1 − ε∞),

θ̄0 = 1
2 (ε∞θ∞ + ε0θ0 − ε1θ1 − εtθt + 1 − ε∞), (2.9)

θ̄1 = 1
2 (ε∞θ∞ − ε0θ0 + ε1θ1 − εtθt + 1 − ε∞),

θ̄ t = 1
2 (ε∞θ∞ − ε0θ0 − ε1θ1 + εt θt + 1 − ε∞).

The PVI function w(t) transforms according to

w̄ = w + N/D, (2.10)

where

N = (ε∞θ∞ − ε0θ0 − ε1θ1 − εtθt + 1 − ε∞)w(w − 1)(w − t),

D = t (t − 1)w′ + ε0θ0(w − 1)(w − t) + ε1θ1w(w − t) + (εt θt − 1)w(w − 1).

Forty-eight additional transformations of this type can be constructed by composition with
the involutions (1.9)–(1.11). (Of course, we can also iterate with the transformations (1.12)–
(1.16), but we do not get any new Okamoto transformations if we restrict attention to results
with t̄ = t .)
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The 64 Okamoto transformations, being of degree 1 in w′, are simpler than the
Schlesinger and Fokas–Yortsos transformations, which are of degree 2 in w′. The latter
can each be factorized into two Okamoto transformations. Conversely, compositions of
two Okamoto transformations can yield transformations of degree up to 4 in w′. Under
Painlevé’s contractions, the Okamoto transformations for PVI carry down to the Gromak
transformations for PV (Gromak 1976a, 1976b) and the Gambier–Lukashevich transformations
for PIV (Gambier 1910, Lukashevich 1967a, 1967b, Bureau 1980).

In the appendix, we solve Chazy’s equation (1.21) directly in terms of PVI without using
the Fokas–Yortsos equation as an intermediate step. It will be noted that the induced group
of symmetries of PVI that leaves equation (1.21) invariant is larger than the group that leaves
equation (2.8) invariant because there are several distinct maps from equation (1.21) to (2.8).

3. Master Painlevé equations

The sixth Painlevé equation (1.6) is a ‘master Painlevé equation’ in the sense that particular
limiting contractions of PVI yield 25 of the 50 equations in Gambier’s and Ince’s lists (Gambier
1910, Ince 1926). These equations have Ince numbers I, II, III, IV (PI), VII, VIII, IX (PII),
XI, XII, XIII (PIII), XVII with m = 2, XVIII, XIX, XX, XXIX, XXX, XXXI (PIV), XXXII,
XXXIII, XXXIV, XXXVII, XXXVIII, XXXIX (PV), XLIX and L (PVI). The contractions
from PVI to the other five Painlevé equations are well known (Painlevé 1906, Ince 1926).
These can be supplemented by a contraction from PIV to Ince-XXXIV (Kitaev 1992) and
two different contractions of Ince-XXXIV yielding PI and Ince-XX. The other 17 equations
involve elliptic or simpler functions.

To get Ince-XLIX (Gambier’s 48th equation), replace t by a + εt in PVI and suitably scale
the parameters. The limiting equation as ε → 0 is

w′′ = 1

2

{
1

w
+

1

w − 1
+

1

w − a

}
(w′)2

+ w(w − 1)(w − a)

{
α +

β

w2
+

γ

(w − 1)2
+

δ

(w − a)2

}
. (3.1)

By suitably generalizing the gauge in Ince-XLIX, we can capture 17 of the 25 contractions
of PVI by just taking particular values of the parameters. Let P(w) and Q(w) be arbitrary
polynomials in w of degree at most 4 with constant coefficients, P being not identically zero.
Then the equation,

w′′ = P ′(w)

2P(w)
(w′)2 +

P(w)Q′(w) − Q(w)P ′(w)

P (w)
, (3.2)

with first integral, (w′)2 = KP(w) + 2Q(w), has the Painlevé property. Only four of its
ten parameters are essential. When P(w) is either cubic or quartic with no square factors,
equation (3.2) is equivalent to Ince-XLIX under a Möbius transformation (1.8) with constant
coefficients. It is the standard form (3.1) of Ince-XLIX when P(w) = w(w − 1)(w − a).
When P(w) has square factors or is of lower degree, equation (3.2) separates into equations
equivalent to the other 16 equations and includes each of their standard forms. In Painlevé
classification problems, we call an equation like (3.2) a master Painlevé equation because it
embraces several classification subcases at once (see Cosgrove (1997)). A different usage of
the term applies to equations (3.4) and (3.14).

It is instructive to see how far we can rewrite PVI in a general gauge. Let

P(t, w) = A(t)w4 + B(t)w3 + C(t)w2 + D(t)w + E(t),
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where the five coefficient functions are arbitrary except that A(t) and B(t) are not both zero
and P(t, w) has no square factors in w. Construct the relative invariants,

J1(t) = 12AE − 3BD + C2,

J2(t) = 27AD2 − 72ACE − 9BCD + 27B2E + 2C3,

J3(t) = 4(J1)
3 − (J2)

2

27
,

J4(t) = 1

27

(
3J2

dJ1

dt
− 2J1

dJ2

dt

)
,

J5(t) = 1

J4

dJ4

dt
− 1

J3

dJ3

dt
.

The invariant J3 is A6 times the discriminant of the quartic P(t, w) when A �= 0 and is B6

times the discriminant of the cubic P(t, w) when A = 0. Under the stated hypotheses, J3

does not vanish. The nonvanishing of J4 is a separate hypothesis, the case J4 = 0 yielding
Ince-XLIX in a general gauge instead of PVI. Under a gauge change of the form (1.8), PVI can
be transformed into the equation,

w′′ = Pw(t, w)

2P(t, w)
(w′)2 +

{
Pt(t, w)

P (t, w)
+ J5(t)

}
w′ +

R(t, w)

P (t, w)
, (3.3)

where the subscripts t and w denote partial differentiation and R(t, w) is a polynomial in w

of degree 6, in general, but can be of lower degree in particular cases. Unfortunately, the
coefficients of R(t, w) cannot be expressed in terms of symmetric functions of the roots of
P(t, w), except in the elementary Picard case α = β = γ = 0 and δ = 1/2, are so are rather
complicated. Also, because J3 appears on the denominator, the reductions to PV in a general
gauge, and so on, where P(t, w) has square factors, requires special handling. We see that
equation (3.3) does not fulfil the role of a master Painlevé equation that crosses classification
boundaries quite as well as equation (3.2) or some of the rational second-degree equations in
Cosgrove (1997).

Let us now take a closer look at the fifth member of Chazy’s system (III). This equation
appears in the literature in two qualitatively different gauges, with internal variations within
each. Chazy’s original gauge, in which elliptic and Lamé functions appear in the coefficients,
occurs naturally in the Painlevé classification of third-order equations (Chazy 1911, Bureau
1964, Cosgrove 2000).

Of the 13 canonical types of third-order equations appearing in Chazy (1911), the first is
identified by the reduced equation,

d3U

dx3
= −6

(
dU

dx

)2

,

and corresponding full equation,

d3U

dx3
= −6

(
dU

dx

)2

+ A1(x)
d2U

dx2
+ B1(x)U

dU

dx
+ C1(x)U 3

+ D1(x)
dU

dx
+ E1(x)U 2 + F1(x)U + G1(x),

whose coefficients are to be determined by running standard Painlevé tests. An admissible
choice of gauge is A1(x) = 0 and E1(x) = D1(x). Then the compatibility conditions in the
Laurent expansion about a movable simple pole (resonances 1 and 6) force B1(x) = C1(x) = 0
and supply three differential constraints on the remaining coefficients.
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The final form of the Chazy-I equation is

d3U

dx3
= 6

{
−

(
dU

dx

)2

+ A(x)

(
dU

dx
+ U 2

)
+ B(x)U + C(x)

}
, (3.4)

where the coefficient functions A(x), B(x) and C(x) satisfy

A′′ = 6A2, B ′′ = 6AB, C ′′ = B2 + 2AC, (3.5)

the primes on A,B and C denoting d/dx. This is the most compact of several alternative
forms of the Chazy-I equation. It appears in this form in Chazy (1911) and in a closely related
gauge in Chazy (1907). It contains all of system (III) and all of the Painlevé transcendents
in their full generality after integration. Because of the latter property, we call it a ‘master
Painlevé equation’, this being a different usage of the phrase to that above. Up to a translation
in x,A(x) is one of the following three functions:

℘(x; 0, g3), 1/x2, 0.

As already mentioned, we could use some left over gauge freedom to normalize g3. A
translation in U could also be used to remove one of the constants in B(x). Thus only three of
the six parameters in equation (3.4) are essential.

The first case, where A(x) is a Weierstrass elliptic function, integrates up to an equation
equivalent to (1.26) and can be solved in terms of PVI. The second case integrates up to an
equation equivalent to (1.25) and can be solved in terms of PV and/or PIII. The third case
subdivides into equations that integrate up to (1.22)–(1.24) and can be solved in terms of
PI, PII or PIV functions, respectively.

A first integral of (3.4) is(
d2U

dx2
− 2AU − B

)2

= −4

(
dU

dx

)3

+ 12AU 2 dU

dx
− 4A′U 3 + 4A

(
dU

dx

)2

+ (12B − 4A′)U
dU

dx
+ (4A2 − 6B ′)U 2 + (12C − 2B ′)

dU

dx

+ (4AB − 12C ′)U + B2 − 12
∫

BC dx + K. (3.6)

We can easily express the variables and coefficient functions in equation (1.26) in terms of
those in equation (3.6) or vice versa when A(x) = ℘(x; 0, g3) with g3 �= 0. Two first integrals
of the A and B equations (3.5) are

(A′)2 = 4A3 − g3, AB ′ − BA′ = k1.

The variables u(x) and U(x) are related by

u = U − U0, U0 = k1A
′ − g3B

2g3A
, (3.7)

and U0 satisfies dU0/dx = k1A/g3 and d2U0/dx2 − 2AU0 = B. The Lamé function H(x)

satisfying (1.26) and the integral in (3.6) are given by

H = 3g3(B
2 − 4AC) + 3k2

1

g3A
,∫

BC dx = 1

12g3A3

{
6A2C ′(g3B − k1A

′) + 12k1A
4C

−A′B
(
g3B

2 − 3k2
1

)
+ 3k1(A

3 − g3)B
2 + k3

1

}
,
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where we selected a particular integration constant. Then the constants α2 and δ2 in
equation (1.26) are given by

α2 = 12k1

g3
− 4, δ2 = k2

1(5k1 + g3)

g2
3

− K.

The most useful form of equation (1.26) is one with the same independent variable t as the
PVI function w(t). Suppose that u(x) satisfies equation (1.26) and write A(x) = ℘(x; 0, g3)

as above. Let µ be one of the roots of µ6 = g3/27 and let

x = 1

3µ

∫
dt

t2/3(t − 1)2/3
. (3.8)

The inverse t (x) is the elliptic function {1 + ℘′(µx; 0,−1)}/2. The elliptic function A(x) is
given by

A(x) = µ2(t2 − t + 1)

t2/3(t − 1)2/3
, (3.9)

A′(x) = µ3(t + 1)(t − 2)(2t − 1)

t (t − 1)
. (3.10)

The Lamé function H(x) is given by

H(x) = D1t + D2

t1/3(t − 1)1/3
, (3.11)

where D1 and D2 are constants linearly related to β2 and γ2. The solution u(x) of
equation (1.26) is given by

u(x) = µ(72y − α2(2t − 1))

24t1/3(t − 1)1/3
, (3.12)

where the variable y(t) satisfies the second-degree equation,

t2(t − 1)2(y ′′)2 = −4y ′(ty ′ − y){(t − 1)y ′ − y} + A1(y
′)2 + A2(ty

′ − y) + A3y
′ + A4.

(3.13)

This is precisely the equation denoted by SD-I.a in Cosgrove and Scoufis (1993). The
coefficients are given in terms of α2, δ2,D1 and D2 by

A1 = −α2

6
, A2 = −µ2D1

3g3
, A3 = α2

2

144
− µ2D2

3g3
,

A4 = µ2α2(D1 + 2D2)

216g3
− δ2

27g3
− α3

2

11 664
.

Equation SD-I.a is gauge-equivalent to the generic case of the ten-parameter equation
denoted by SD-I:

(y ′′)2 = −4{c1t
3 + c2t

2 + c3t + c4}−2{c1(ty
′−y)3 + c2y

′(ty ′ − y)2

+ c3(y
′)2(ty ′ − y) + c4(y

′)3 + c5(ty
′ − y)2 + c6y

′(ty ′ − y)

+ c7(y
′)2 + c8(ty

′ − y) + c9y
′ + c10}. (3.14)

(Differentiating out the parameter c10 produces a nine-parameter version of the Chazy-I
equation (Cosgrove 2000).) The generic case occurs when the polynomial c1t

3 +c2t
2 +c3t +c4

is either cubic or quadratic with no square factors, in which case it can be normalized to
t (t − 1) by a gauge transformation (Möbius in t, linear in y). This case involves PVI. The
generic and nongeneric cases together involve all six Painlevé transcendents in their full
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generality. Conversely, every case of equation SD-I can be solved with one of the six Painlevé
transcendents or simpler functions. Thus SD-I qualifies unconditionally as a master Painlevé
equation in the second sense.

To solve equation SD-I.a in terms of PVI (Jimbo and Miwa 1981, Jimbo 1982), let

A1 = α − β + γ − δ −
√

2α + 1,

A2 = (β + γ )(α + δ −
√

2α),

A3 = (γ − β)(α − δ −
√

2α + 1) + 1
4 (α − β − γ + δ −

√
2α)2,

A4 = 1
4 (γ − β)(α + δ −

√
2α)2 + 1

4 (β + γ )2(α − δ −
√

2α + 1),

where
√

2α can take either sign. Then

y = t2(t − 1)2

4w(w − 1)(w − t)

{
w′ − w(w − 1)

t (t − 1)

}2

+
1

8
(1 −

√
2α)2(1 − 2w) − 1

4
β

(
1 − 2t

w

)

− 1

4
γ

(
1 − 2(t − 1)

w − 1

)
+

1

8
(1 − 2δ)

(
1 − 2t (w − 1)

w − t

)
, (3.15)

y ′ = − t (t − 1)

4w(w − 1)

{
w′ −

√
2α

w(w − 1)

t (t − 1)

}2

− 1

2
β

w − t

(t − 1)w
− 1

2
γ

w − t

t (w − 1)
, (3.16)

where w(t) is a solution of the PVI equation (1.6). The inverse map is

w = − tS + 8(
√

2α − 1)t2(t − 1)2y ′′

R
, (3.17)

where

R = 16(
√

2α − 1)2t (t − 1)y ′ + {4y − (α −
√

2α + δ)(2t − 1) + β + γ }2

+ 8(
√

2α − 1)2(βt + γ t − γ ), (3.18)

S = 4(t − 1)
{
4y − (α −

√
2α + δ)(2t − 1) − 2(

√
2α − 1)2 + β + γ

}
y ′

− (4y − α +
√

2α − δ){4y − (α −
√

2α + δ)(2t − 1)}
− (β + γ ){8y + 2(3α − 3

√
2α − δ + 2)t + β + γ }

− 4(β − γ )(
√

2α − 1)2. (3.19)

Equation SD-I.a (3.13) was written in a manifestly symmetric form by Jimbo and Miwa
(1981) and Jimbo (1982) which reveals immediately a large number of symmetries of the PVI

function, including the Schlesinger and Okamoto transformations (Okamoto 1987). Introduce
Jimbo and Miwa’s theta parameters given by equation (1.7) and specifically set

√
2α = 1−θ∞.

Then Jimbo and Miwa’s presentation of equation SD-I.a (with different names for variables)
is

t2(t − 1)2y ′(y ′′)2 = −{(2t − 1)(y ′)2 − 2yy ′ + M}2 + (y ′ + m1)(y
′ + m2)(y

′ + m3)(y
′ + m4),

(3.20)

where

m1 = 1
4 (θ∞ + θt )

2, m2 = 1
4 (θ∞ − θt )

2,

m3 = 1
4 (θ0 + θ1)

2, m4 = 1
4 (θ0 − θ1)

2,

M = 1
16 (θ∞ + θt )(θ∞ − θt )(θ0 + θ1)(θ0 − θ1).
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Symmetries of the PVI parameters that leave equation (3.20) invariant jump off the page
at the reader. We can see obvious permutations of ±θ∞ ± θt and ±θ0 ± θ1 that permute the
mi and preserve the overall sign of M. It is a straightforward calculation to lift the parameter
maps to maps from w(t) to itself. By combining with the group of 24 Möbius transformations
in w generated by (1.9)–(1.16), an infinite number of transformations can be generated, all of
which are products of Okamoto and simpler transformations.

We distinguish three basic types of symmetries that leave SD-I.a invariant. First, sign
changes θµ → −θµ are trivial and have no effect on PVI for µ = 0, 1 and t. Nevertheless,
they are important in compositions with other transformations. The sign change θ∞ → −θ∞,
on the other hand, generates a transformation of degree 4 in w′ which has the same effect on
PVI as the Schlesinger transformations θ∞ → θ∞ ± 2. These can be factorized into two basic
Schlesinger transformations of the form (2.7) or into two Fokas–Yortsos transformations or
four Okamoto transformations.

Second, the four theta parameters can undergo two disjoint interchanges. This gives
rise to 12 transformations for PVI of degree 2 in w′ which are of the same character as the
Fokas–Yortsos transformations, and include the latter. As above, we prefer to untwist these
transformations using the involutions (1.9)–(1.11). We then get all 24 of the basic Schlesinger
transformations, whose effect on the theta parameters is given by equation (1.30).

Third, we get eight of the sixteen Okamoto transformations given above by equations (2.9)
and (2.10). The eight are identified by ε∞ = +1. To get the other eight with ε∞ = −1, we
just set

√
2α = θ∞ − 1. The Fokas–Yortsos transformations are products of two Okamoto

transformations.
Finally, changing the sign of θ̄∞ in (2.9) yields sixteen transformations (eight with√

2α = 1 − θ∞ and eight with
√

2α = θ∞ − 1) that factorize into three Okamoto
transformations. All of the transformations mapping PVI to itself that leave SD-I.a invariant
can be factorized into one, two, three or four Okamoto transformations.

Appendix. Solutions of Chazy’s system (II)

We gather together the solutions of the five second-degree equations of Chazy’s system (II).
A corresponding set of solutions of system (III) is readily available (Jimbo and Miwa 1981,
Cosgrove and Scoufis 1993). For convenience as a reference, we include an optional scaling
parameter A in the first four equations. The symbols εj for j = 1, 2, . . . each denote ±1. The
primes on w denote d/dt .

The first Chazy equation is(
d2v

dz2
− 6v2 − α1

)2

= 4A2z2

{(
dv

dz

)2

− 4v3 − 2α1v − β1

}
. (A.1)

Let q be any root of the cubic equation,

4q3 + 2α1q + β1 = 0,

and let

α = 3q + 2ε1A

2A
, β = 3q2 + 2α1

2A2
.

Then the solution of equation (A.1) is

z = A−1/2t, v(z) = 1
2A(ε1w

′ + w2 + 2tw) − 1
2q, (A.2)

where w(t) satisfies the PIV equation (1.4) with parameters α and β.
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The multiplicity of values of α and β implies several direct maps from PIV to PIV. These
include the Gambier–Lukashevich and Schlesinger transformations. Similar comments apply
to the remaining cases below.

The second Chazy equation is(
d2v

dz2
− 2v3 − α1v − β1

)2

= −4(v − A ez)2

{(
dv

dz

)2

− v4 − α1v
2 − 2β1v − γ1

}
. (A.3)

Let q1 and q2 be any two distinct roots of the quartic equation,

q4 + α1q
2 + 2β1q + γ1 = 0,

and let

r = q1 + q2, α = (r3 + 2α1r − 4ε1β1)/(8r),

β = −(r3 + 2α1r + 4ε1β1)/(8r), γ = 2A(ε1r − i), δ = 2A2.

Then the solution of equation (A.3) is

z = log t, v(z) = t (iw′ − 2Aw)

(w − 1)2
− ε1r(w + 1)

2(w − 1)
, (A.4)

where w(t) satisfies the PV equation (1.5) with the indicated parameters. (If r = 0 then
β1 = 0 and the above expressions hold except that α and −β become the roots of the quadratic
equation 4x2 − 2α1x + γ1 = 0.)

The third Chazy equation is(
d2v

dz2
− α1v − β1

)2

= 4A2v2

z2

{(
dv

dz

)2

− α1v
2 − 2β1v − γ1

}
. (A.5)

This is the primed version of equation SD-III in Cosgrove and Scoufis (1993). When α1 and
β1 are not both zero, let q be any root of the quadratic equation (linear if α1 = 0),

α1q
2 + 2β1q + γ1 = 0,

and let

γ = µ2, α = −µ(2ε1Aq + 1),

β = µ{4ε1Aβ1 + α1(2ε1Aq + 1)}, δ = −µ2α2
1,

where µ is another optional scaling parameter. The solution of equation (A.5) when α1 and
β1 are not both zero is

z = 2µt, v(z) = ε1t

2A

{
w′ − µα1

w
+ µw

}
, (A.6)

where w(t) satisfies the PIII equation (1.3) with the indicated parameters. When α1 = 0 and
β1 and γ1 are not both zero, the solution of equation (A.5) is

z = t, v(z) = ε1t

2A

{
w′

w
+ β1w

}
, (A.7)

where w(t) satisfies the PIII equation with parameters,

γ = β2
1 , α = ε1Aγ1 − β1, β = ε1A, δ = 0.

On the overlap of the two cases, the solutions given differ by scalings.
The fourth Chazy equation is(

d2v

dz2
− 6v2 − α1v − β1

)2

=
(

2Av

z
− z

A

)2 {(
dv

dz

)2

− 4v3 − α1v
2 − 2β1v − γ1

}
. (A.8)
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Let q be any root of the cubic equation,

4q3 + α1q
2 + 2β1q + γ1 = 0,

and let

α = −A2
{
(12q + α1)

2 + 4
(
24β1 − α2

1

)}
384

, β = −{A(4q + α1) − 4ε1}2

128
,

γ = 2Aq − ε1

2A
, δ = − 1

2A2
.

The solution of equation (A.8) is

z =
√

2t, v(z) = t (ε1Aw′ + w)

A2w(w − 1)
− 4q + α1

8
+

A(4q + α1) − 4ε1

8Aw
, (A.9)

where w(t) satisfies the PV equation (1.5) with the indicated parameters.
The fifth Chazy equation is(

d2v

dz2
− 2v3 − α1v − β1

)2

= 4 tan2 z

(
v − δ1

sin z

)2 {(
dv

dz

)2

− v4 − α1v
2 − 2β1v − γ1

}
.

(A.10)

Let q1 and q2 be any two distinct roots of the quartic equation,

q4 + α1q
2 + 2β1q + γ1 = 0,

and let

r = q1 + q2, α = (r + 2ε2δ1 − ε1)
2/8,

β = −(r − 2ε2δ1 − ε1)
2/8, γ = −(r3 + 2α1r − 4β1)/(8r),

δ = {r3 + 2(α1 + 2)r + 4β1}/(8r).

Then the solution of equation (A.10) is

sin z = ε2
1 + t

1 − t
, cos z = 2i

√
t

1 − t
, (A.11)

v(z) = ε1tw
′

w
+

(r + 2ε2δ1 − ε1)w

2(t − 1)
− (r − 2ε2δ1 − ε1)t

2(t − 1)w
− 2ε2δ1(t + 1)

2(t − 1)
− ε1

2
, (A.12)

where w(t) satisfies the PVI equation (1.6) with the indicated parameters. (If r = 0 then
β1 = 0 and the above expressions hold except that γ and 1/2 − δ become the roots of the
quadratic equation 4x2 + 2α1x + γ1 = 0.)

The multiplicity of values of q1 and q2 and the various ± signs imply a large number of
transformations from PVI to PVI. These include the sixteen Okamoto transformations (2.10),
the four Schlesinger transformations (2.7), the four Fokas–Yortsos transformations (2.5) and
the involutions (1.9), (1.13) and (t, w) → (1/t, 1/w).
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